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ABSTRACT:Excited state vibrations are crucial for determining theT
photophysical and photochemical properties of molecular compounds;.
Stimulated Raman scattering can coherently stimulate and probe molegular ).
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properties. Working under resonance conditions enables cross-segtion
enhancement and selective excitation to a targeted electronic level but is
hampered by an increased signal complexity due to the presepce of
overlapping spectral contributions. Here, we show how detailed inforggation
about ground and excited state vibrations can be disentangled by exploiting
the relative time delay between Raman and probe pulses to contél the
excited state population, combined with a diagrammatic formaliﬁnﬁ‘tp ) A
dissect the pathways concurring with the signal generation. The proposaman Shit (em)
method is then exploited to elucidate the vibrational properties of the

ground and excited electronic states in the paradigmatic case of cresyl violet. We anticipate that the presented approach holds
potential for selective mapping of the reaction coordinates pertaining to transient electronic stages implied in photoactiv
compounds.

l 3 Ground state
[ Excited state

Raman spectroscopy is a powerful tool for accessing tibhance to access the entire vibrational spectrum, from low- to
vibrational ngerprints of molecules or solid state high-frequency Raman modes, in a single acquisition. Addition-
compounds and can be used to extract structural and dynamiglly, FSRS is immune to the non-vibrationally resonant
information about the samples being investigated. During theckground, which on the contrary can overwhelm the
past several decades, because of the development of ultrafastiumédtional response measured bgreint frequency-domain
nonlinear optical techniquedi, erent experimental protocols nonlinear Raman experimental layouts, such as coherent anti-
based on coherent Raman scatfemiange been introduced for  Stokes Raman scattering, in botiresonant and resonant
investigating the vibrational properties of reacting species ar@imes:**® Moreover, because FSRS can combine a high
for studying their photophysical and photochemical propertiespectral resolution with a femtosecond time precision in the
Particular eorts have been devoted to the development oktimulation of Raman coherert¢é$,adding a third pulse,
experimental and theoretical protocols that can measure afgimely the photochemical pump that precedes tHRFRRir
assign vibrational modes on excited potential energy surfaggfl excites the sample, turns FSRS into a puofe
distinguishing them from ground state eigenstates. techniqué' 2* that can access vibrational spectroscopy on
Femtosecond stimulated Raman scattering (FSRS) represediipicosecond time regimes, ensuring at the same time atomic
a convenient way to combine the vibrational sensitivity (?Jpectral resoluticfi.®”
Raman spectroscopy with theciency of coherent process-  Notably, Raman features in the FSRS scheme provide
based techniques, providing high-intensity aoescence  jnformation about the imaginary part of the generated nonlinear
background free signal&:SRS exploits the combination of a pojarization, due to the self-heterodyne nature of the measured
narrowband Raman pulse (RP) with a femtosecond probe pu Bnaf'3%® Hence, the spectral pres can result in complex
(PP) to coherently stimulate and probe vibrational excitationg,q shapes, depending on the probed spectral range, on the RP
read out as Raman gain on the high directionatlBRAnd

robed over a wide spectral range. Hence, the stimulated Rarman .
P P g oy ReCeived: June 26, 2020

spectrum can be isolated considering the R&io Tt Accepted: August 25, 2020
Off

between the PP spectrum measured in the prekghem@  Published: August 25, 2020
absencd gy) of the RP, conventionally termed the Raman gain,

providing high structural sensitiVity” to the sample under

investigation. The use of a broadband probe pulse provides the
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Figure 1 Two-pulse FSRS conceptin the presence of a resonant Raman pulse. (a) Sketch of the experimental setup and (b) pulse interaction sche
For a PP preceding the RP, maximum vibrational coherences are stimulated in the ground electronic state and result in positive gains on the
spectrum. On the contrary, for a RP preceding the PP, a large portion of the Raman pulse can be absorbed by the system, and excited state prop
can be probed by subsequent FSRS interactions with #ié paer. In the bottom of panel b, we report energy ladder diagrams describing the two

di erent processédg.and|g, denote the ground and thst vibrational excited levels in the electronic ground state, respectiiehanedgle

indicate their counterparts in the excited electronic level. Abbreviations: BBO, beta barium borate; BS, beam splitter; DL, delaylline; OPA, optic
parametric ampkr; SHG, second harmonic generation.

resonance condition, and on the order of the radiattter us to increase theective temporal window in which the Raman
interactions that generate the nonlinear Raman*3ignal. coherences are sampled. Under such a condition, only a small
Specically, for a RP wavelength tuned far from any portion of the RP precedes the PP and hence most of the
electronic transition of the system, FSRS bands appearing tothelecules are in the ground state at the time of arrival of the
red side of the spectrum (at PP wavelend#nger thangp) probe. Here we demonstrate how the opposite scenario, i.e., a PP
are always positive gains, while FSRS features to the blue sidésamgorally following the RP maximum, can be exploited to
negative loss€¥0n the contrary, for aresonantly tuned RP, theprobe excited state vibrational properties by photoexciting the
FSRS signals appearing to the blue side of the spectrum shosystem in a controlled manner acting on the negative time delay
pro le evolving from negative losses to positive gains throughd then stimulating the Raman process because of the joint
dispersive line shapes as a function of the resonance ctnditioaction of the residual RP with the PP. To evaluate the
while FSRS bands to the red side typically show positige.pro femtosecond stimulated Raman response under such con-
Critically, in the presence of a resonant RP, Raman coherendi®ns, we recorded red side FSRS spectra of cresyl violet
can be generated on elient potential energy surfaces; (CV),***® °° an oxazine dye commonly used in histology as
therefore, assigning the measured vibrations to the pertinestéin, characterized by a long-lived excited state, with non-
electronic state can represent a demanding task. In particuladiative decay to the ground state occurring on the nanosecond
while the resonance enhancement is in general a powerful ttole scale. Moreover, CV shows overlapping ground state
for isolating the vibrational response of a desired chromophabsorption and stimulated emission, representing hence an
in complex molecular systéfrig, the presence of overlapping excellent candidate for testing the capability of the presented
ground state absorption and stimulated emission, ieistine approach for distinguishing between ground and excited state
for discriminating between signals that are originated fromibrations. CV was dissolved in methanol, and the FSRS
ground or excited energy levels. This has so far limited the usespéctrum was measured at ambient temperature with the RP
FSRS for mapping excited state properties with respect to fitsed to be in resonance with the sample absorption maximum
time-domain analogues, namely impulsive stimulated Ranatn 595 nm. A sketch of the two-pulse FSRS experimental setup
scattering-based technidife$, where the coherent oscilla- exploited for the measurements is reporfédiime 4. Briey,
tions can be directly monitored in the time domain. In particulag Ti:sapphire laser source generates 3.6 mJ, 35 fs pulses at 800
phase analysis or the dependence of the time-domain signahom and a 1 kHz repetition rate. The synthesis of the RP is
the pulse chirp is a basis for distinguishing between groundalstained by a two-stage optical parametric @am(@PA) that
excited electronic state vibrationg’ produces tunable near-infrared pulses, followed by a frequency
Inthis work, we consider an FSRS experimentin which a higleubling inside a 25 mm thick beta barium borate (BBO)
uence resonant Raman pulse, which, acting also ascrastal. Spectral compression inside the thick nonlinear crystal
photochemical pump, promotes the system ground staemsures the same time high RRnces and narrowband
population to a desired electronic state prior to the coheremiulses® An additional rectcation of the RP temporal and
stimulation of the vibrational coherences. Interestingly, FSRBectral prdes is achieved by a double-pass (2f) spectral
experiments are commonly performed using a positive timéer®’*®which results in Gaussia®.5 ps Raman pulses. The
delayT between the Raman and the probe pulses (i.e., with tiemtosecond PP is a white-light continuum (WLC) obtained by
PP that temporally precedes the RP maximum), to increase bdétisusing a small portion of the laser fundamental into a sapphire
the Raman gain and the spectral resofiifidrin fact, as  crystal. A variable attenuator and an iris along the beam path
depicted in the left panelsFofure 1 because the stimulated before the sapphire crystal are used to tune and optimize the
vibrational coherences evolve until a second interaction with thieape of the generated WLC. RP polarization is parallel to the
RP that gates the Raman oscillations, using a gositaleles PP, and itsuence is adjusted by using a linear neutral-density
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Figure 2(a) Cresyl violet static absorption spectrum, with a sketch of the sample molecular structure. Due to the RP-induced photoexcitation, FSF
spectra are accompanied by a ngaton of the PP absorption, which results in a baseline background superimposed on the Raman features. In pane
b, we reportthe FSRS spectrum recorded with a 420 nJ Raman pump5@8athabefore the baseline removal and shown for selected time delays

T between the Raman and probe pulsed|édareas represent the FSRS isolated contributions. The baseline maximum is red-shifted with respect to
the maximum absorption due to a sm&0(nm) Stokes shift. We note that for a PP following the RP the baseline intensity decreases, indicating a
reduced quantity of molecules in the electronic excited seter(tiime delay traces have not been verticsdity.dVhile for positive time delays

Raman bands appear as peaks on the top of the baseline background, Tovalegatitie FSRS spectrum shows negative peaks (losses). In panel d,

the corresponding color maps are reported for all of the measured time delays, while in panel c, we show the baseline arEanasictfeaation of

be used to extract a direct estimate of the excited vs ground state molecules.

ler. Further details about the experimental scheme have been _
described in ref® and60. RG( )=S0
The absorption spectrum of the system, together with a sketch
of the molecular structure, is reporteéigure 2, while in
Figure B, we report the measured Raman spectra for selectathere((x) indicates the imaginary part,ofy ) is the probe
time delay$, with the corresponding FSRS color maps for all ofed spectral prée (before interaction with the sample), and
the measured values shown in panel d. Notably, the RPpw( T ) is the nth order total nonlinear polarization
photoexcitation induces a maaion of the PP ransmission, j,qyced in the systeffiBecause several processes, correspond-
which results in a smooth background due to ground sta to di erent RP and PReld permutations, contribute to the

bleaching and stimulated emission in addition to the FS . : .
features. The area under such a baseline (shBignria 2) generation of the FSRS signal, several Feynman diagrams,

conveniently provides a direct estimate off tHependent ericting the e\{olution of the density mf';\trix during consecutive
fraction of molecules promoted to the excited electronic stadteractions with the electromagnetédds, have to be

and can be determined by subtracting a polynomi# pro considered.

obtained as the besto the Raman gain in the spectral regions We evaluated the third-order FSRS process with the system
free of Raman bands. As expected, for large positive time delait&glly either in the ground stafg (d) or starting from the

the baseline vanishes, indicating that all of the molecules proksdited electronic lev{d (€) upon two preceding interactions

by FSRS are in the ground state, while for Ibwalues, the  ith the RP. The initial excited state population, proportional to
baseline area increases reaching an almost constantT/aI_ue e measured baseline area, can be directly included in the
values of less tharb00 fs. Most importantly, the FSRS line model from the experimental traces. The Feynman diagrams

shapes sigriantly evolve with the delay: the usual positivethat take into account the FSRS response are sioguma
Raman gains observed for largalues become negative bands o
In the top panel, we report teS,, andS; processes, where the

with a decrease Thwith a trend following the baseline area,

suggesting FSRS contributions from excited state vibration&$t RP PP interactions act on the system initially in the
coherences. electronic ground statg (g population), while in the bottom

To gain further insights into the origin of such negativepanel, diagrang S; are associated with processes in which a
pro les, we modeled the measured spectra by evaluating teuble interaction with the RP initially promotes the system to
FSRS response trough a perturbative expansion of the dengiyexcited electronic stigted, which is then interrogated by a
matrix in powers of the() =  ,( je> ' + ¢ celectric subsequent third-order FSRS process. The nonlinear polar-

elds****%? |n particular, the Raman gain can be calculated aigation associated wihcan be expressed as

@)
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Figure 3Feynman diagrams describing the FSRS process upon a RP-induced excitsienttotitestate. Upon a double interaction with the

RP, the system can be either in the ground state or in the excited electr¢micjstate (g population, respectively). Upon the joint action of the

RP PP pair, a vibrational coherence, either in the groundgstgt ¢r in the excited electronic stjgt (e|), is stimulated. In the right panels, we

evaluate thg + S, + 5 andS, + S, + 3 signals for a model system with a Raman active eigenstate in thieM@@e;monsidering a monochromatic

RP with a wavelength matching the electronic transition and equal dipole moments (black lines): while the system response associated with proce
starting from the ground stafg{ S, + 5 diagrams) is a positive gain, diagrams associated with a system initially in the electronic xeifed state (

+ 3) resultin a negative loss. Red and blue lines show the c8ctigted andS, + S, + 3 signals, respectively, obtained by partially detuning the

RP wavelength (considering a 16 nm shift). The traces correspondimgeatrdsonance condition have been verticsdiytry a constant factor.
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Similarly, the other nonlinear polarization terms associated
with diagram§, S; can be obtained and expressed as
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Figure 4RP wavelength dependence of the FSRS spectra as a function of wavenumber and relative time delay between RP and PP. While for pos
time delays, where the signal originated from processes starting from the ground state, only positive Raman gains are recbrdddefovaegative
observe a signal ptethat depends on the RP wavelength, as expected in the presence of a signal involving excited electronic state excitations.

Figure 5Wavelength dependence of the FSRS spectra. The data (circles) and model (solid lines) are compared as a function ogffRRavavelength
relative time deldlybetween the Raman and probe pulses. For a RP tuned to be in resonance with a system electronic transition, Raman excitatic
processes arising from the system initially in the excited state resultin intense negative losses (negative time delays5@@mmRF anbRo

the RP away from a full resonant condition turns the negative signal into a displersivighpeia odd symmetry: with a blue-shift in the RP the

positive lobe is at higher wavenumbers, and a red-shift of the RP generates a positive lobe at lower frequencies. Traeesrdtozheelsat di

have been verticallyset by a constant factor.

whereP.indicates the electronic excited state population at theesponses result in a Lorentzian response with opposite sign and

arrival time of the PP. A complete derivation G§ti® signals ~ hence cancelout.
is reported in thé&upporting InformatiorWe note that to Inthe right panel dfigure 3we show the correspondgg

correctly evaluate the total system response in the presence gf gignals, with§ = S0 51 O

resonant RP, diagraif§sand S;, which consider a system )_ )
initially in the ground state, with a vibrational cohejenef sake of simplicity equal weights and dipole moments for all of

ted the ioint act f the RP pair. should b the diagrams: for a perfectly resonant RP, while the system
generated upon the joint action of the pair, should be response associated with processes startingg frgnis a

considered. Interestingly, as obatiin the Supporting  positive gain, diagrams in which the system is initially in an
Information for an o-resonant Raman pulse, $ieand S excited electronic state population result in a negative loss.

, evaluated considering for the
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Figure 6 Comparison between the nonresonant FSRS spectrum recorded in the blue side (dashed line) and the extracted resdesfiiRaman pro
ground and excited electronic state coherences (blue dled i@m@as, respectively), with the Raman gains that have been normalized at the intensity

of the stronger band (a690 cm?). Vertical blue and red lines indicate the extracted Raman mode frequencies in the ground and excited states,
respectively. Extracted and measured ground state peak central positions are in agreememtrevhiRatimadiintensities are expected in view of

the resonant vs eresonant conditions. The presence of purely negative peaks ensures the e@spietet@ondition for the blue side FSRS
spectrumi’ In the top panel, sketches of the ground state elongation eigenvectors computed by density functional theory with the B3LYP functions
and the 6-311++G(d,p) basis set are sAtWn.

Notably, detuning the RP away from a perfectly resonantTo retrieve the vibrational information associated with the
condition has almost noeet on the Raman line shape ofhe  measured FSRS spectra, we performed a dlamalthe

S, andS; diagrams and reduces only their corresponding signekperimental traces usig 1 8. The Raman pulsg(t) and
intensity. On the contrary, itresults in a dispersivie s, the probe pulsegt) temporal envelopes have been modeled as
S, i.e., for those pathways starting from the efeciggdtate.  Gayssian prees:

As shown in the right paneFajure 3for a RP red-shifted with

respect to the maximum absorption, the positive lobe of such a _ 0
dispersive prde is at lower frequencies (larger absolute Raman RO = e
shift), while blue-shifting the RP generates a positive lobe at {9 = %StZ/Z PS4

lower frequencies. Interestingly, for $heliagram, which ’ ’

involves the creation of excited state vibrational coherences, the .

rst three interactions occur on the bra side of the densi&‘% ere the parameterg, and have been adjusted to bast
matrix, resulting in a mode spediesonant enhancement

condition similar to the one characterizing the ground state blLé%uaI to 2.5 ps in agreement with the experimental one), while
o ereaenl, e 0o snd e tate populaypand.

: ) . 9 pectively, have been extracted from the baseline area. In
matching the energy drence ( g+ o TO verify the g e 5the experimental FSRS spectra (colored circles) are
presence of such dispersivelpsan the measured spectra and compared with the simulations (solid lines), showing a good
hence also the presencfeof excitations, we recorded cresyl agreement. This is further corroborated by the comparison
violet FSRS spectra scanning the RP wavelength across dbg&veen the extracted ground and excited electronic state FSRS
resonance prte. InFigure 4we report the corresponding color spectrum and the nonresonant blue side stimulated Raman
map as a function of Raman shift and temporalldetdween  spectrum reported iffigure ¢ with peak positions and
the RP PP pair. Slices for selected time delays are also reporta@iplitudes reported ifable 1 As expected, the extracted
in Figure 5as colored circles. As expected, while for a higblectronic ground state Raman line positions are in line with the
positiveT the RP PP interaction stimulating the vibrational blue side Raman losses, validating the capability of assigning the
coherences acts on only those molecules initially in the grountasured vibrations to the corresponding electronic state.
state and generates only positive Raman gains, for fegativilotably, the excited state normal modes show in general small
values we observe negative or dispersive line shapes indicdteguency decreases indicating reduced excited energy level
the presence of excited state Raman coherences. We note thate constants (with respect to the ground state potentials). For
also for some positive time delays<(1 ps), a signcant the 590, 669, and 726 cnRaman modes, we identify high
fraction of molecules is in the excited state at the arrival timewénsition dipole moments,, pointing to the reaction
the probe. coordinate nature of such Raman excitafibhs.

StST)%2 Rzeéi o

e experimental data = 16900 cnt, the electronic
dephasing ratg, = 580 cm?, with an extracted RP duration
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Table 1. Ground and Excited State Peak Positions and ASSOCIATED CONTENT
Intensities *  Supporting Information
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469 469 07 01 https://pubs.acs.org/doi/10.1021/acs.jpclett.0cQ1971
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