Comment on “Glass-Specific Behavior in the Damping of Acousticalike Vibrations”

In a recent Letter [1], Rufflé et al., collecting literature data on the high frequency dynamics on different glasses, reported on a correlation between the energy position of the “boson peak” (BP) and the Ioffe-Regel energy. The first quantity, $E_{BP} = h \Omega_{BP}$, is taken as the energy position of the maximum of the function $g(\omega)/\omega^2$, where $g(\omega)$ is the density of vibrational states. The second quantity, $E_{IR} = h \Omega_{IR}$, is defined by the authors as the energy pertaining to the longitudinal acoustic modes that fulfill the condition $\Gamma = \Omega/\pi$ (here Γ is the FWHM of the peak centered at Ω). Plotting the quantity E_{IR} against E_{BP} the authors of Ref. [1] find a correlation [see Fig. 1(a)] strongly suggesting that $E_{IR} = E_{BP}$ for a large class of glasses.

Examining the current literature, including the papers cited in Ref. [1], we reached the following conclusions. (i) Other systems can be added to the plot: some data were not known to Rufflé et al. at the time of their submission (NiZr [2], GeO$_2$ [3]), while other glasses were not included (CKN [4]). All of these three new systems do not fit to the correlation [systems 11, 12, and 13 in Fig. 1(b)]. (ii) The point for d-SiO$_2$ (system 3 in Fig. 1(b)) violates the correlation. (iii) The system reported as polycarbonate—and hence classified as a polymer—(Ref. [40] in [1]) strongly suggesting that $E_{IR} = E_{BP}$ for lithium-borate glasses the BP positions reported by Rufflé and co-workers were taken from Raman spectra. It is well known that the quantity measured in Raman scattering is not $g(\omega)/\omega^2$, but $g(\omega)C(\omega)/\omega^2$, and that the presence of the Raman coupling coefficient $C(\omega)$ shifts toward higher energy the position of the maximum of $g(\omega)/\omega^2$. It is, therefore, misleading to put in the same plots E_{BP} data coming from Raman spectra and from the maximum of $g(\omega)/\omega^2$. We report on Fig. 1(b) the data for the two lithium-borate glasses using the E_{BP} values derived from inelastic neutron scattering [13]. The points no longer lie on a line.

Summing up, on the basis of Fig. 1(b) one can conclude that (i) no correlation exists between E_{IR} and E_{BP}, and (ii) the Ioffe-Regel limit for almost all the investigated glasses lies above the boson peak position.

We thank L. Bove and F. Sette for useful discussions.

G. Ruocco,1,2 A. Matic,3 T. Scopigno,2 and S. N. Yannopoulos4

1Department of Physics
Università di Roma “La Sapienza,”
L-00185, Roma, Italy
2Research Center SOFT-INFM-CNR
Università di Roma “La Sapienza,”
L-00185, Roma, Italy
3Department of Applied Physics
Chalmers University of Technology
SE 41296, Gothenburg, Sweden
4Institute of Chemical Engineering and High-Temperature Chemical Processes
FORTH/ICE-HT
P.O. Box 1414, GR-26504 Patras, Greece

Received 8 April 2006; published 13 February 2007
DOI: 10.1103/PhysRevLett.98.079601
PACS numbers: 63.50.+x, 78.35.+c, 81.05.Kf

[5] The placing of other systems can be questioned. Specifically, for selenium Ref. [1] reports $E_{IR} = 2.4$ meV and $E_{BP} = 1.7$ meV, while literature data are $E_{IR} = 3.3$ meV [6] and $E_{BP} = 1.4$ meV [7]. In the case of glycerol, the literature reports a T-independent E_{IR} [8] and a strong T dependence of E_{BP} [9]. For ethanol, E_{BP} is 1.8 meV [10], not 2.4 meV as reported in [1].